Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.450
Filtrar
1.
Science ; 384(6691): 66-73, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574138

RESUMO

Asthma is deemed an inflammatory disease, yet the defining diagnostic feature is mechanical bronchoconstriction. We previously discovered a conserved process called cell extrusion that drives homeostatic epithelial cell death when cells become too crowded. In this work, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion in both mice and humans. Although relaxing the airways with the rescue treatment albuterol did not affect these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these features. Our findings show that bronchoconstriction causes epithelial damage and inflammation by excess crowding-induced cell extrusion and suggest that blocking epithelial extrusion, instead of the ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.


Assuntos
Asma , Brônquios , Broncoconstrição , Animais , Humanos , Camundongos , Asma/patologia , Asma/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Inflamação/patologia , Transdução de Sinais , Canais Iônicos/antagonistas & inibidores , Lisofosfolipídeos/antagonistas & inibidores , Esfingosina/análogos & derivados , Esfingosina/antagonistas & inibidores , Brônquios/patologia , Brônquios/fisiopatologia
2.
Science ; 384(6691): 30-31, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574157

RESUMO

Bronchoconstriction causes epithelial cell extrusion that promotes airway inflammation.


Assuntos
Asma , Broncoconstrição , Humanos , Sistema Respiratório , Inflamação , Células Epiteliais
3.
Ital J Pediatr ; 50(1): 47, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475842

RESUMO

Exercise-induced bronchoconstriction (EIB) is characterized by the narrowing of airways during or after physical activity, leading to symptoms such as wheezing, coughing, and shortness of breath. Distinguishing between EIB and exercise-induced asthma (EIA) is essential, given their divergent therapeutic and prognostic considerations. EIB has been increasingly recognized as a significant concern in pediatric athletes. Moreover, studies indicate a noteworthy prevalence of EIB in children with atopic predispositions, unveiling a potential link between allergic sensitivities and exercise-induced respiratory symptoms, underpinned by an inflammatory reaction caused by mechanical, environmental, and genetic factors. Holistic management of EIB in children necessitates a correct diagnosis and a combination of pharmacological and non-pharmacological interventions. This review delves into the latest evidence concerning EIB in the pediatric population, exploring its associations with atopy and sports, and emphasizing the appropriate diagnostic and therapeutic approaches by highlighting various clinical scenarios.


Assuntos
Asma Induzida por Exercício , Hipersensibilidade Imediata , Hipersensibilidade , Esportes , Humanos , Criança , Broncoconstrição , Asma Induzida por Exercício/diagnóstico , Asma Induzida por Exercício/tratamento farmacológico , Asma Induzida por Exercício/epidemiologia , Exercício Físico
4.
BMC Pulm Med ; 24(1): 27, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200483

RESUMO

BACKGROUND: Pulmonary air embolism (AE) and thromboembolism lead to severe ventilation-perfusion defects. The spatial distribution of pulmonary perfusion dysfunctions differs substantially in the two pulmonary embolism pathologies, and the effects on respiratory mechanics, gas exchange, and ventilation-perfusion match have not been compared within a study. Therefore, we compared changes in indices reflecting airway and respiratory tissue mechanics, gas exchange, and capnography when pulmonary embolism was induced by venous injection of air as a model of gas embolism or by clamping the main pulmonary artery to mimic severe thromboembolism. METHODS: Anesthetized and mechanically ventilated rats (n = 9) were measured under baseline conditions after inducing pulmonary AE by injecting 0.1 mL air into the femoral vein and after occluding the left pulmonary artery (LPAO). Changes in mechanical parameters were assessed by forced oscillations to measure airway resistance, lung tissue damping, and elastance. The arterial partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) were determined by blood gas analyses. Gas exchange indices were also assessed by measuring end-tidal CO2 concentration (ETCO2), shape factors, and dead space parameters by volumetric capnography. RESULTS: In the presence of a uniform decrease in ETCO2 in the two embolism models, marked elevations in the bronchial tone and compromised lung tissue mechanics were noted after LPAO, whereas AE did not affect lung mechanics. Conversely, only AE deteriorated PaO2, and PaCO2, while LPAO did not affect these outcomes. Neither AE nor LPAO caused changes in the anatomical or physiological dead space, while both embolism models resulted in elevated alveolar dead space indices incorporating intrapulmonary shunting. CONCLUSIONS: Our findings indicate that severe focal hypocapnia following LPAO triggers bronchoconstriction redirecting airflow to well-perfused lung areas, thereby maintaining normal oxygenation, and the CO2 elimination ability of the lungs. However, hypocapnia in diffuse pulmonary perfusion after AE may not reach the threshold level to induce lung mechanical changes; thus, the compensatory mechanisms to match ventilation to perfusion are activated less effectively.


Assuntos
Embolia Aérea , Embolia Pulmonar , Tromboembolia , Animais , Ratos , Dióxido de Carbono , Hipocapnia , Perfusão , Brônquios , Broncoconstrição
5.
Klin Padiatr ; 236(2): 139-144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286408

RESUMO

OBJECTIVE: Exercise induced laryngeal obstruction (EILO) is an important differential diagnosis to exercise induced bronchoconstriction (EIB) and diagnosed via continuous laryngoscopy while exercising (CLE). However, availability of CLE is limited to specialized centres. And without CLE EILO is often misdiagnosed as EIB. Therefore it is essential to carefully preselect potential EILO candidates. Aim of this study was to investigate whether two short questionnaires -Asthma Control Test (ACT) and Dyspnea Index (DI) evaluating upper airway-related dyspnea- can differentiate between EIB and EILO. METHODS: Patients with dyspnea while exercising were analysed with an exercise challenge in the cold chamber (ECC) to diagnose EIB in visit 1 (V1), as appropriate a CLE in visit 2 (V2, 4-6 weeks after V1) and ACT and DI in V1 and V2. EIB patients were treated with asthma medication after V1. RESULTS: Complete dataset of 36 subjects were gathered. The ACT showed lower values in V2 in EILO compared to EIB patients. A lack of improvement in ACT in V2 after asthma medication of EIB patients is suspicious for additional EILO diagnosis. The DI showed higher values in V1 in EILO compared to EIB patients. A score≥30 can predict a positive CLE reaction. CONCLUSION: ACT and DI are valuable tools in preselecting CLE candidates to assure timely diagnostic despite limited diagnostic capabilities.


Assuntos
Obstrução das Vias Respiratórias , Asma , Doenças da Laringe , Humanos , Broncoconstrição , Obstrução das Vias Respiratórias/diagnóstico , Obstrução das Vias Respiratórias/etiologia , Doenças da Laringe/diagnóstico , Asma/diagnóstico , Dispneia/diagnóstico , Dispneia/etiologia , Inquéritos e Questionários
6.
Scand J Med Sci Sports ; 34(1): e14358, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36965010

RESUMO

Athletes often experience lower airway dysfunction, such as asthma and exercise-induced bronchoconstriction (EIB), which affects more than half the athletes in some sports, not least in endurance sports. Symptoms include coughing, wheezing, and breathlessness, alongside airway narrowing, hyperresponsiveness, and inflammation. Early diagnosis and management are essential. Not only because untreated or poorly managed asthma and EIB potentially affects competition performance and training, but also because untreated airway inflammation can result in airway epithelial damage, remodeling, and fibrosis. Asthma and EIB do not hinder performance, as advancements in treatment strategies have made it possible for affected athletes to compete at the highest level. However, practitioners and athletes must ensure that the treatment complies with general guidelines and anti-doping regulations to prevent the risk of a doping sanction because of inadvertently exceeding specified dosing limits. In this review, we describe considerations and challenges in diagnosing and managing athletes with asthma and EIB. We also discuss challenges facing athletes with asthma and EIB, while also being subject to anti-doping regulations.


Assuntos
Asma Induzida por Exercício , Asma , Doping nos Esportes , Humanos , Broncoconstrição , Doping nos Esportes/prevenção & controle , Asma Induzida por Exercício/diagnóstico , Asma/diagnóstico , Atletas , Inflamação
7.
Respir Res ; 24(1): 262, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907918

RESUMO

INTRODUCTION: The standard therapy for bronchial asthma consists of combinations of acute (short-acting ß2-sympathomimetics) and, depending on the severity of disease, additional long-term treatment (including inhaled glucocorticoids, long-acting ß2-sympathomimetics, anticholinergics, anti-IL-4R antibodies). The antidepressant amitriptyline has been identified as a relevant down-regulator of immunological TH2-phenotype in asthma, acting-at least partially-through inhibition of acid sphingomyelinase (ASM), an enzyme involved in sphingolipid metabolism. Here, we investigated the non-immunological role of amitriptyline on acute bronchoconstriction, a main feature of airway hyperresponsiveness in asthmatic disease. METHODS: After stimulation of precision cut lung slices (PCLS) from mice (wildtype and ASM-knockout), rats, guinea pigs and human lungs with mediators of bronchoconstriction (endogenous and exogenous acetylcholine, methacholine, serotonin, endothelin, histamine, thromboxane-receptor agonist U46619 and leukotriene LTD4, airway area was monitored in the absence of or with rising concentrations of amitriptyline. Airway dilatation was also investigated in rat PCLS by prior contraction induced by methacholine. As bronchodilators for maximal relaxation, we used IBMX (PDE inhibitor) and salbutamol (ß2-adrenergic agonist) and compared these effects with the impact of amitriptyline treatment. Isolated perfused lungs (IPL) of wildtype mice were treated with amitriptyline, administered via the vascular system (perfusate) or intratracheally as an inhalation. To this end, amitriptyline was nebulized via pariboy in-vivo and mice were ventilated with the flexiVent setup immediately after inhalation of amitriptyline with monitoring of lung function. RESULTS: Our results show amitriptyline to be a potential inhibitor of bronchoconstriction, induced by exogenous or endogenous (EFS) acetylcholine, serotonin and histamine, in PCLS from various species. The effects of endothelin, thromboxane and leukotrienes could not be blocked. In acute bronchoconstriction, amitriptyline seems to act ASM-independent, because ASM-deficiency (Smdp1-/-) did not change the effect of acetylcholine on airway contraction. Systemic as well as inhaled amitriptyline ameliorated the resistance of IPL after acetylcholine provocation. With the flexiVent setup, we demonstrated that the acetylcholine-induced rise in central and tissue resistance was much more marked in untreated animals than in amitriptyline-treated ones. Additionally, we provide clear evidence that amitriptyline dilatates pre-contracted airways as effectively as a combination of typical bronchodilators such as IBMX and salbutamol. CONCLUSION: Amitriptyline is a drug of high potential, which inhibits acute bronchoconstriction and induces bronchodilatation in pre-contracted airways. It could be one of the first therapeutic agents in asthmatic disease to have powerful effects on the TH2-allergic phenotype and on acute airway hyperresponsiveness with bronchoconstriction, especially when inhaled.


Assuntos
Asma , Broncoconstrição , Camundongos , Ratos , Humanos , Animais , Cobaias , Cloreto de Metacolina/farmacologia , Amitriptilina/farmacologia , Amitriptilina/uso terapêutico , Histamina/farmacologia , Broncodilatadores/farmacologia , Broncodilatadores/uso terapêutico , Serotonina/farmacologia , Serotonina/uso terapêutico , Acetilcolina/farmacologia , Simpatomiméticos/farmacologia , Simpatomiméticos/uso terapêutico , 1-Metil-3-Isobutilxantina/farmacologia , 1-Metil-3-Isobutilxantina/uso terapêutico , Dilatação , Pulmão , Asma/tratamento farmacológico , Albuterol , Endotelinas/farmacologia , Endotelinas/uso terapêutico , Tromboxanos/farmacologia , Tromboxanos/uso terapêutico
8.
Lung ; 201(6): 499-509, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37985513

RESUMO

Airway nerves regulate vital airway functions including bronchoconstriction, cough, and control of respiration. Dysregulation of airway nerves underlies the development and manifestations of airway diseases such as chronic cough, where sensitization of neural pathways leads to excessive cough triggering. Nerves are heterogeneous in both expression and function. Recent advances in confocal imaging and in targeted genetic manipulation of airway nerves have expanded our ability to visualize neural organization, study neuro-immune interactions, and selectively modulate nerve activation. As a result, we have an unprecedented ability to quantitatively assess neural remodeling and its role in the development of airway disease. This review highlights our existing understanding of neural heterogeneity and how advances in methodology have illuminated airway nerve morphology and function in health and disease.


Assuntos
Asma , Tosse , Humanos , Tosse/etiologia , Sistema Respiratório/inervação , Broncoconstrição/fisiologia , Doença Crônica
9.
Physiol Rep ; 11(21): e15860, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37960999

RESUMO

Exercise-induced bronchoconstriction (EIB) is usually assessed by changes in forced expiratory volume in 1 s (FEV1 ) which is effort dependent. The purpose of this study was to determine whether the diaphragm electromyogram (EMGdi ) recorded from chest wall surface electrodes could be used to reflect changes in airway resistance during an exercise challenge test and to distinguish patients with EIB from those without EIB. Ninety participants with or without asthma history were included in the study. FEV1 was recorded before and 5, 10, 15, and 20 min after exercise. EIB was defined as an FEV1 decline greater than 10% after exercise. A ratio of root mean square of EMGdi to tidal volume (EMGdi /VT ) was used to assess changes in airway resistance. Based on changes in FEV1 , 25 of 90 participants exhibited EIB; the remainder were defined as non-EIB participants. EMGdi /VT in EIB increased by 124% (19%-478%) which was significantly higher than that of 21% (-39% to 134%) in non-EIB participants (p < 0.001). At the optimal cutoff point (54% in EMGdi /VT ), the area under the ROC curve (AUC) for detection of a positive test was 0.92 (p < 0.001) with sensitivity 92% and specificity 88%. EMGdi /VT can be used to assess changes in airway resistance after exercise and could be used to distinguish participants with EIB from those without EIB.


Assuntos
Asma Induzida por Exercício , Broncoconstrição , Humanos , Asma Induzida por Exercício/diagnóstico , Diafragma , Volume de Ventilação Pulmonar , Eletromiografia , Testes de Provocação Brônquica , Volume Expiratório Forçado , Teste de Esforço
10.
Expert Rev Respir Med ; 17(9): 823-831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795708

RESUMO

BACKGROUND: The pulmonary impairment in patients with bronchoconstriction induced by eucapnic voluntary hyperpnea(EVH) goes beyond the respiratory system, also impairing autonomic nervous modulation. This study aimed to evaluate the behavior of cardiac autonomic modulation in young asthmatics with and without EIB after the EVH test. RESEARCH DESIGN AND METHODS: A cross-sectional study design using 54 asthmatics(51.9% female), aged between 10 and 19 years, investigated with the EVH test. Forced expiratory volume in one second(FEV1) was measured at 5, 10, 15, and 30 min after EVH. Heart rate variability(HRV) measures of time were assessed pre and 30 min-post EVH. The diagnosis of Exercise-Induced bronchoconstriction with underlying clinical asthma(EIBA) was confirmed by a fall in FEV1 ≥10% compared to baseline. RESULTS: Thirty(55.5%) asthmatics had EIBA. Subjects with EIBA have reduced mean of the R-R intervals in relation to baseline until 15 minutes after EVH. Individuals without EIBA had increased parasympathetic activity compared to baseline(rMSSD) from 5 min after EVH(p < 0.05). This parasympathetic activity increase in relation to baseline was seen in individuals with EIBA after 25 minutes (rMSSD = 49.9 ± 5.3 vs 63.5 ± 7.2, p < 0.05). CONCLUSION: Young asthmatics with EIBA present a delay in the increase of the parasympathetic component after EVH when compared to asthmatics without EIBA.


Assuntos
Asma Induzida por Exercício , Asma , Humanos , Feminino , Adolescente , Criança , Adulto Jovem , Adulto , Masculino , Asma Induzida por Exercício/diagnóstico , Estudos Transversais , Pulmão , Broncoconstrição/fisiologia , Volume Expiratório Forçado/fisiologia
12.
PLoS One ; 18(7): e0288623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37459335

RESUMO

BACKGROUND: People experiencing asthma exacerbations are at increased risk of cardiovascular events. To better understand the relationship between asthma exacerbations and cardiovascular risk, this randomized case-control, cross-over controlled trial assessed the immediate systemic inflammatory and vascular responses to acutely induced pulmonary inflammation and bronchoconstriction in people with asthma and controls. METHODS: Twenty-six people with asthma and 25 controls underwent three airway challenges (placebo, mannitol, and methacholine) in random order. Markers of cardiovascular risk, including serum C-reactive protein, interleukin-6, and tumor necrosis factor, endothelial function (flow-mediated dilation), microvascular function (blood-flow following reactive hyperemia), and arterial stiffness (pulse wave velocity) were evaluated at baseline and within one hour following each challenge. The systemic responses in a) asthma/control and b) positive airway challenges were analyzed. (ClinicalTrials.gov reg# NCT02630511). RESULTS: Both the mannitol and methacholine challenges resulted in clinically significant reductions in forced expiratory volume in 1 second (FEV1) in asthma (-7.6% and -17.9%, respectively). Following positive challenges, reduction in FEV1 was -27.6% for methacholine and -14.2% for mannitol. No meaningful differences in predictors of cardiovascular risk were observed between airway challenges regardless of bronchoconstrictor response. CONCLUSION: Neither acutely induced bronchoconstriction nor pulmonary inflammation and bronchoconstriction resulted in meaningful changes in systemic inflammatory or vascular function. These findings question whether the increased cardiovascular risk associated with asthma exacerbations is secondary to acute bronchoconstriction or inflammation, and suggest that other factors need to be further evaluated such as the cardiovascular impacts of short-acting inhaled beta-agonists.


Assuntos
Asma , Doenças Cardiovasculares , Humanos , Cloreto de Metacolina/farmacologia , Doenças Cardiovasculares/etiologia , Análise de Onda de Pulso , Fatores de Risco , Asma/complicações , Asma/tratamento farmacológico , Broncoconstrição , Testes de Provocação Brônquica , Volume Expiratório Forçado
13.
Am J Physiol Lung Cell Mol Physiol ; 325(1): L66-L73, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37280517

RESUMO

Children born to obese mothers are prone to develop asthma and airway hyperresponsiveness, but the mechanisms behind this are unclear. Here we developed a mouse model of maternal diet-induced obesity that recapitulates metabolic abnormalities seen in humans born to obese mothers. Offspring of dams fed a high-fat diet (HFD) showed increased adiposity, hyperinsulinemia, and insulin resistance at 16 wk of age despite being fed only a regular diet (RD). Bronchoconstriction induced by inhaled 5-hydroxytriptamine was also significantly increased in offspring of HFD-fed versus RD-fed dams. Increased bronchoconstriction was blocked by vagotomy, indicating this reflex was mediated by airway nerves. Three-dimensional (3-D) confocal imaging of tracheas collected from 16-wk-old offspring showed that both epithelial sensory innervation and substance P expression were increased in the offspring of HFD-fed dams compared with offspring of RD-fed dams. For the first time, we show that maternal high-fat diet increases airway sensory innervation in offspring, leading to reflex airway hyperresponsiveness.NEW & NOTEWORTHY Our study reveals a novel potential mechanism, by which maternal high-fat diet increases the risk and severity of asthma in offspring. We found that exposure to maternal high-fat diet in mice leads to hyperinnervation of airway sensory nerves and increased reflex bronchoconstriction in offspring fed a regular diet only. These findings have important clinical implications and provide new insights into the pathophysiology of asthma, highlighting the need for preventive strategies in this patient population.


Assuntos
Asma , Efeitos Tardios da Exposição Pré-Natal , Hipersensibilidade Respiratória , Humanos , Feminino , Criança , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Crianças Adultas , Broncoconstrição , Obesidade , Reflexo , Asma/etiologia
14.
Pediatr Pulmonol ; 58(9): 2647-2655, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37378471

RESUMO

BACKGROUND: Oral breathing is considered to increase hyper-responsiveness of the airways. Data on the need for nose clip (NC) during exercise challenge test (ECT) in children and adolescents is scarce. Ouraim was to evaluate the role of NC during ECT in children and adolescents. METHODS: A prospective, cohort study; children referred for ECT were evaluated on two separate visits, with and without a NC. Demographic, clinical data and measurements of lung functions were recorded. Allergy and asthma control were evaluated by Total Nasal Symptoms Score (TNSS) and Asthma Control Test (ACT) questionnaires. RESULTS: Sixty children and adolescents (mean age 16.7 ± 1.1 years, 38% Female,) performed ECT with NC and 48 (80%) completed visit 2 (ECT without NC), 8.7 ± 7.9 days after visit 1. Following exercise, 29/48 patients (60.4%) with NC had a decline of ≥12% in forced expiratory volume in the first second (FEV1 ) (positive ECT) compared to only 16/48 (33.3%) positive tests without NC (p = 0.0008). Test result was changed in 14 patients from positive ECT (with NC) to negative ECT (no NC) and in only one patient from negative to positive. The use of NC resulted in greater FEV1 decline (median 16.3% predicted, IQR 6.0-19.1% predicted vs. median 4.5% predicted, IQR 1.6-18.4% predicted, p = 0.0001), and better FEV1 increase after bronchodil at or inhalation compared to ECT without NC. Higher TNSS scores did not predict higher probability to positive ECT. CONCLUSIONS: The use of NC during ECT increases detection rate of exercise induced bronchoconstriction during ECT in the pediatric population. These findings strengthen the recommendation of nasal blockage during ECT in children and adolescents.


Assuntos
Asma Induzida por Exercício , Broncoconstrição , Adolescente , Criança , Feminino , Humanos , Masculino , Asma Induzida por Exercício/diagnóstico , Asma Induzida por Exercício/epidemiologia , Testes de Provocação Brônquica , Estudos de Coortes , Teste de Esforço/métodos , Volume Expiratório Forçado , Estudos Prospectivos
16.
Prostaglandins Other Lipid Mediat ; 168: 106761, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336434

RESUMO

Exercise-induced bronchoconstriction (EIB) is thought to be triggered by increased osmolarity at the airway epithelium. The aim of this study was to define the contractile prostanoid component of EIB, using an ex vivo model where intact segments of bronchi (inner diameter 0.5-2 mm) isolated from human lung tissue and subjected to mannitol. Exposure of bronchial segments to hyperosmolar mannitol evoked a contraction (64.3 ± 3.5 %) which could be prevented either by elimination of mast cells (15.8 ± 4.3 %) or a combination of cysteinyl leukotriene (cysLT1), histamine (H1) and thromboxane (TP) receptor antagonists (11.2 ± 2.3 %). Likewise, when antagonism of TP receptor was exchanged for inhibition of either cyclooxygenase-1 (8 ± 2.5 %), hematopoietic prostaglandin (PG)D synthase (20.7 ± 5.6 %), TXA synthase (14.8 ± 4.9 %), or the combination of the latter two (12.2 ± 4.6 %), the mannitol-induced contraction was prevented, suggesting that the TP-mediated component is induced by PGD2 and TXA2 generated by COX-1 and their respective synthases.


Assuntos
Broncoconstrição , Prostaglandinas , Humanos , Pulmão , Brônquios , Manitol/farmacologia
17.
Exp Physiol ; 108(8): 1080-1091, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37341687

RESUMO

NEW FINDINGS: What is the central question of this study? The lung response to inhaled methacholine is reputed to be greater in male than in female mice. The underpinnings of this sex disparity are ill defined. What is the main finding and its importance? We demonstrated that male airways exhibit a greater content of airway smooth muscle than female airways. We also found that, although a more muscular airway tree in males might contribute to their greater responsiveness to inhaled methacholine than females, it might also curb the heterogeneity in small airway narrowing. ABSTRACT: Mouse models are helpful in unveiling the mechanisms underlying sex disparities in asthma. In comparison to their female counterparts, male mice are hyperresponsive to inhaled methacholine, a cardinal feature of asthma that contributes to its symptoms. The physiological details and the structural underpinnings of this hyperresponsiveness in males are currently unknown. Herein, BALB/c mice were exposed intranasally to either saline or house dust mite once daily for 10 consecutive days to induce experimental asthma. Twenty-four hours after the last exposure, respiratory mechanics were measured at baseline and after a single dose of inhaled methacholine that was adjusted to trigger the same degree of bronchoconstriction in both sexes (it was twice as high in females). Bronchoalveolar lavages were then collected, and the lungs were processed for histology. House dust mite increased the number of inflammatory cells in bronchoalveolar lavages to the same extent in both sexes (asthma, P = 0.0005; sex, P = 0.96). The methacholine response was also markedly increased by asthma in both sexes (e.g., P = 0.0002 for asthma on the methacholine-induced bronchoconstriction). However, for a well-matched bronchoconstriction between sexes, the increase in hysteresivity, an indicator of airway narrowing heterogeneity, was attenuated in males for both control and asthmatic mice (sex, P = 0.002). The content of airway smooth muscle was not affected by asthma but was greater in males (asthma, P = 0.31; sex, P < 0.0001). These results provide further insights regarding an important sex disparity in mouse models of asthma. The increased amount of airway smooth muscle in males might contribute functionally to their greater methacholine response and, possibly, to their decreased propensity for airway narrowing heterogeneity.


Assuntos
Asma , Masculino , Feminino , Animais , Camundongos , Cloreto de Metacolina/farmacologia , Asma/patologia , Pulmão , Broncoconstrição , Músculo Liso/fisiologia
18.
Adv Respir Med ; 91(3): 239-253, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37366805

RESUMO

BACKGROUND: Exercise-induced bronchoconstriction (EIB) is a common problem in elite athletes. Classical pathways in the development of EIB include the osmotic and thermal theory as well as the presence of epithelial injury in the airway, with local water loss being the main trigger of EIB. This study aimed to investigate the effects of systemic hydration on pulmonary function and to establish whether it can reverse dehydration-induced alterations in pulmonary function. MATERIALS AND METHODS: This follow-up study was performed among professional cyclists, without a history of asthma and/or atopy. Anthropometric characteristics were recorded for all participants, and the training age was determined. In addition, pulmonary function tests and specific markers such as fractional exhaled nitric oxide (FeNO) and immunoglobulin E (IgE) were measured. All the athletes underwent body composition analysis and cardiopulmonary exercise testing (CPET). After CPET, spirometry was followed at the 3rd, 5th, 10th, 15th, and 30th min. This study was divided into two phases: before and after hydration. Cyclists, who experienced a decrease in Forced Expiratory Volume in one second (FEV1) ≥ 10% and/or Maximal Mild-Expiratory Flow Rate (MEF25-75) ≥ 20% after CPET in relation to the results of the spirometry before CPET, repeated the test in 15-20 days, following instructions for hydration. RESULTS: One hundred male cyclists (n = 100) participated in Phase A. After exercise, there was a decrease in all spirometric parameters (p < 0.001). In Phase B, after hydration, in all comparisons, the changes in spirometric values were significantly lower than those in Phase A (p < 0.001). CONCLUSIONS: The findings of this study suggest that professional cyclists have non-beneficial effects on respiratory function. Additionally, we found that systemic hydration has a positive effect on spirometry in cyclists. Of particular interest are small airways, which appear to be affected independently or in combination with the decrease in FEV1. Our data suggest that pulmonary function improves systemic after hydration.


Assuntos
Asma Induzida por Exercício , Asma , Humanos , Masculino , Broncoconstrição , Seguimentos , Pulmão , Asma/metabolismo
19.
Scand J Med Sci Sports ; 33(8): 1509-1518, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37082779

RESUMO

BACKGROUND: Exercise-induced bronchoconstriction (EIB) and exercise-induced laryngeal obstruction (EILO) are common in elite athletes. Knowledge of which factors are related to incident EIB and EILO is limited. The aim of this study was to explore the course of EIB and EILO in adolescent athletes over a 2 years period and baseline characteristics related to incident EIB. METHODS: Questionnaire data on respiratory symptoms, asthma, and aeroallergy and results of objective EIB and EILO tests were collected from 58 participants (27 tested for EILO) at baseline and after 2 years (follow-up). Associations between incident EIB and baseline asthma-like symptoms, exercise-induced symptoms, fractional exhaled nitric oxide (FeNO), aeroallergy, and sex were assessed using logistic regression models. RESULTS: Ten participants had incident EIB, and eight participants had persistent EIB. Five were EIB positive at baseline but negative at follow-up, while 35 participants were EIB negative at both time points. Having incident EIB was associated with reporting waking up with chest tightness (OR = 4.38; 95% CI: 1.06, 22.09). Reporting an increased number of asthma-like symptoms increased the likelihood of incident EIB (OR = 2.78; 95% CI: 1.16, 6.58). No associations were found between exercise-induced symptoms, FeNO, aeroallergy, or sex and incident EIB. Incident EILO was found in three and persistent EILO in two of the 27 participants tested. CONCLUSION: Two in nine had incident EIB and one eighth had incident EILO, suggesting that recurrent testing for EIB and EILO may be relevant in young athletes. Particularly, EIB-negative athletes reporting multiple asthma-like symptoms could benefit from recurrent EIB testing.


Assuntos
Asma , Broncoconstrição , Adolescente , Humanos , Estudos Longitudinais , Asma/epidemiologia , Atletas , Instituições Acadêmicas
20.
Scand J Med Sci Sports ; 33(7): 1221-1230, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37051807

RESUMO

INTRODUCTION: Exercise-induced bronchoconstriction (EIB) is not only highly prevalent in people with asthma, but can also occur independently, particularly in athletes. Fractional exhaled nitric oxide (FeNO) is an indirect biomarker of type 2 airway inflammation that has an established role in the assessment and management of asthma. The aim was to evaluate the value of FeNO in the assessment of EIB in athletes. METHOD: Multicenter retrospective analysis. In total, 488 athletes (male: 76%) performed baseline FeNO, and spirometry pre- and post-indirect bronchial provocation via eucapnic voluntary hyperpnea (EVH). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for established FeNO thresholds-that is, intermediate (≥25 ppb) and high FeNO (≥40 ppb and ≥ 50 ppb)-and were evaluated against objective evidence of EIB (≥10% fall in FEV1 ). The diagnostic accuracy of FeNO was calculated using receiver operating characteristics area under the curve (ROC-AUC). RESULTS: Thirty-nine percent of the athletes had a post-EVH fall in FEV1 consistent with EIB. FeNO values ≥25 ppb, ≥40 ppb, and ≥ 50 ppb were observed in 42%, 23%, and 17% of the cohort, respectively. The sensitivity of FeNO ≥25 ppb was 55%, which decreased to 37% and 27% at ≥40 ppb and ≥ 50 ppb, respectively. The specificity of FeNO ≥25 ppb, ≥40 ppb, and ≥ 50 ppb was 66%, 86%, and 89%, respectively. The ROC-AUC for FeNO was 0.656. CONCLUSIONS: FeNO ≥40 ppb provides good specificity, that is, the ability to rule-in a diagnosis of EIB. However, due to the poor sensitivity and predictive values, FeNO should not be employed as a replacement for indirect bronchial provocation in athletes.


Assuntos
Asma , Broncoconstrição , Humanos , Masculino , Teste da Fração de Óxido Nítrico Exalado , Testes de Provocação Brônquica , Estudos Retrospectivos , Óxido Nítrico , Testes Respiratórios , Atletas , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...